
wis2box
Release 0.5.1

World Meteorological Organization (WMO)

2022-12-08

TABLE OF CONTENTS:

1 Overview 3
1.1 Features . 3

2 WIS 2.0 5

3 How wis2box works 7
3.1 High level system context . 7
3.2 Docker Compose . 7
3.3 Container workflow . 7
3.4 Technology . 10

4 Installation 11
4.1 Requirements and dependencies . 11
4.2 Installing wis2box . 12
4.3 Summary . 12

5 Quickstart 13
5.1 Requirements and dependencies . 13

6 Configuration 15
6.1 Environment variables . 15
6.2 Sections . 15
6.3 Docker Compose . 19
6.4 Summary . 19

7 Administration 21
7.1 Public environment variables . 21
7.2 Default service ports . 22
7.3 MQTT Quality of Service (QoS) . 22

8 Running 23
8.1 Design time . 23
8.2 Runtime . 23
8.3 Running topics . 23

9 Storage 37
9.1 Overview . 37
9.2 Uploading data to MinIO . 39

10 Monitoring 43
10.1 Prometheus exporters for wis2box . 43

i

10.2 Loki logging . 43
10.3 Monitoring topics . 44

11 Services 47
11.1 Discovery Catalogue . 47
11.2 Data API . 48
11.3 SpatioTemporal Asset Catalog (STAC) . 49
11.4 Web Accessible Folder (WAF) . 49
11.5 Broker . 49
11.6 Adding services . 49

12 Authentication and Access control 51
12.1 Adding Access Control . 51
12.2 Authenticating . 51
12.3 Removing Access Control . 52
12.4 Extending Access Control . 52

13 Data access 53
13.1 Overview . 53
13.2 API . 53
13.3 PubSub . 66
13.4 Running the examples . 70
13.5 Summary . 71

14 Extending wis2box 73
14.1 Building your own data plugin . 73
14.2 Packaging . 74
14.3 Integration . 74
14.4 Example plugins . 75

15 Development 77
15.1 Testing . 77
15.2 Versioning . 77
15.3 Code Conventions . 78

16 Contributing 79

17 Support 81

18 License 83
18.1 Software . 83
18.2 Documentation . 87

19 Indices and tables 89

ii

wis2box, Release 0.5.1

Author World Meteorological Organization (WMO)

Contact https://github.com/wmo-im/wis2box

Release 0.5.1

Date 2022-12-08

TABLE OF CONTENTS: 1

https://github.com/wmo-im/wis2box

wis2box, Release 0.5.1

2 TABLE OF CONTENTS:

CHAPTER

ONE

OVERVIEW

wis2box is a Python reference implementation of a WMO WIS 2.0 node. The project provides a plug and play toolset
to ingest, process, and publish weather/climate/water data using standards-based approaches in alignment with the
WIS 2.0 principles. In addition, wis2box also provides access to all data in the WIS 2.0 network, from other wis2box
instances and global centres.

wis2box is designed to have a low barrier to entry for data providers, providing enabling infrastructure and services for
data discovery, access, and visualization.

1.1 Features

• WIS 2.0 compliant: easily register your wis2box to WIS 2.0 infrastructure, conformant to WMO data and meta-
data standards

• event driven or interactive data ingest/process/publishing pipeline

• visualization of stations/data on interactive maps

• discovery metadata management and publishing

3

https://community.wmo.int/activity-areas/wis/wis2-implementation

wis2box, Release 0.5.1

• download/access of data from the WIS 2.0 network to your local environment

• standards-based data services and access mechanisms:

– Data formats

∗ BUFR

∗ GeoJSON

– Message formats

∗ WIS2 Notification Message Format

– Access and notification protocols

∗ HTTP

∗ MQTT

– APIs

∗ OGC API

• robust and extensible plugin framework. Write your own data processing engines and integrate seamlessly into
wis2box!

• free and open source (FOSS)

• containerized: use of Docker, enabling easy deployment to cloud or on-premises infrastructure

4 Chapter 1. Overview

https://en.wikipedia.org/wiki/BUFR
https://datatracker.ietf.org/doc/html/rfc7946
https://github.com/wmo-im/wis2-notification-message/blob/main/WIS2_Message_Format_README.adoc
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://mqtt.org
https://ogcapi.ogc.org

CHAPTER

TWO

WIS 2.0

The WMO Information System is a coordinated global infrastructure responsible for telecommunications and data
management functions and is owned and operated by WMO Members.

WIS provides an integrated approach suitable for all WMO Programmes to meet the requirements for routine collection
and automated dissemination of observed data and products, as well as data discovery, access, and retrieval services
for weather, climate, water, and related data produced by centres and Member countries in the framework of any WMO
Programme. It is capable of exchanging large data volumes, such as new ground and satellite-based systems, finer
resolutions in numerical weather prediction, and hydrological models and their applications. These data and products
must be available to National Hydrological and Meteorological Services (NHMS), but also national disaster authorities
for more timely alerts where and when needed.

WIS is a vital data communications backbone for integrating the diverse real-time and non-real-time high priority data
sets, regardless of location.

Further documentation on WIS 2.0 can be found at the following links:

• WIS Overview

5

https://community.wmo.int/activity-areas/wis
https://community.wmo.int/activity-areas/wis/wis-overview

wis2box, Release 0.5.1

6 Chapter 2. WIS 2.0

CHAPTER

THREE

HOW WIS2BOX WORKS

wis2box is implemented in the spirit of the Twelve-Factor App methodology.

wis2box is a Docker and Python-based platform with the capabilities for centres to publish their data holdings to the
WMO Information System with a plug and play capability supporting data publishing, discovery and access.

3.1 High level system context

The following diagram provides a high level overview of the main functions of wis2box:

Core wis2box functionality includes the ability to:

• integrate your existing data processing pipeline

• cache station metadata from the OSCAR/Surface station metadata management tool

• process and transform your weather/climate/water data into official WMO data formats

• create and publish discovery metadata of your datasets

• provide your data via OGC and PubSub standards mechanisms to your data, enabling easy access for web appli-
cations, desktop GIS tools, mobile applications

• connect your wis2box to the WIS 2.0 network

• make your data and services available to market search engines

• subscribe to and download weather/climate/water data from the WIS 2.0 network

3.2 Docker Compose

wis2box is built as Docker Compose application, allowing for easy install and container management.

3.3 Container workflow

Let’s dive a little deeper. The following diagram provides a view of all wis2box containers:

Container functionality can be described as follows:

• Storage: core data and metadata persistence, the initial data entry point of wis2box. Data pipelines and workflow
are triggered from here

• Internal Message Broker: internal message bus

7

https://12factor.net
https://www.docker.com
https://www.python.org
https://oscar.wmo.int/surface
https://docs.docker.com/compose

wis2box, Release 0.5.1

8 Chapter 3. How wis2box works

wis2box, Release 0.5.1

3.3. Container workflow 9

wis2box, Release 0.5.1

• Public Message Broker: public facing broker. Provides data and metadata notifications

• Data Management: the epicentre of wis2box. Provides core wis2box administration and
data/workflow/publishing utilities

• API Application: OGC APIs providing geospatial web services

• Web Application: user interface

3.4 Technology

wis2box is built on free and open source (FOSS) technology.

Container Function Technology Standards
Storage data and meta-

data storage
MinIO Elasticsearch S3

Internal Mes-
sage Broker

PubSub mosquitto MQTT

Public Mes-
sage Broker

PubSub mosquitto MQTT

Data Man-
agement

data processing
and publishing

ecCodes csv2bufr bufr2geojson
OWSLib pygeometa pyoscar

WCMP (WMO Core Metadata Profile)
WMDR (WIGOS Metadata Record)

API Applica-
tion

data discovery
and access

pygeoapi OGC API

Web Appli-
cation

data discovery
and visualization

Vue.js Leaflet OGC API

10 Chapter 3. How wis2box works

https://dosc.min.io
https://www.elastic.co/elasticsearch
https://en.wikipedia.org/wiki/Object_storage
https://mosquitto.org
https://mqtt.org
https://mosquitto.org
https://mqtt.org
https://confluence.ecmwf.int/display/ECC
https://csv2bufr.readthedocs.io
https://github.com/wmo-im/bufr2geojson
https://geopython.github.io/OWSLib
https://geopython.github.io/pygeometa
https://github.com/wmo-cop/pyoscar
https://pygeoapi.io
https://ogcapi.ogc.org
https://vuejs.org
https://leafletjs.com
https://ogcapi.ogc.org

CHAPTER

FOUR

INSTALLATION

wis2box leverages Docker for easy installation across operating systems and environments.

4.1 Requirements and dependencies

Dependencies are installed as containers in the deployment of wis2box. This is true for the wis2box software itself,
which runs as a container orchestrating the necessary data management workflows of a node in the WIS 2.0 network.

wis2box requires the following prior to installation:

Requirement Version
Python 3.8
Docker Engine 20.10.14
Docker Compose 2.4.1

If these are already installed, you can skip to installing wis2box.

• To install Python, follow Python installation.

• To install Docker, follow Docker Engine installation.

• To install Docker Compose, follow Compose installation.

Successful installation can be confirmed by inspecting the versions on your system.

docker version
docker compose version
python3 -V

Note: Docker may require post-install configuration. Linux users may need to follow post install steps to grant docker
privileges. Users in corporate settings my need to configure Docker’s HTTP/HTTPS proxy.

11

https://docs.docker.com/get-started/overview/
https://www.python.org/downloads/release/python-380/
https://docs.docker.com/engine/release-notes/
https://github.com/docker/compose/releases
https://www.python.org/downloads
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/config/daemon/systemd/#httphttps-proxy

wis2box, Release 0.5.1

4.2 Installing wis2box

Once Python and Docker are installed, the wis2box software needs to be installed.

4.2.1 ZIP archive

wis2box can be installed from a ZIP archive of a the latest branch or a wis2box release.

curl, wget or download from your web browser
curl https://github.com/wmo-im/wis2box/archive/refs/heads/main.zip -L -O -J
unzip wis2box-main.zip
cd wis2box-main

4.2.2 GitHub

wis2box can also be installed using the git CLI.

clone wis2box GitHub repository
git clone https://github.com/wmo-im/wis2box.git
cd wis2box

4.3 Summary

Congratulations! Whichever of the abovementioned methods you chose, you have successfully installed wis2box onto
your system. From here, you can get started with test data by following the Quickstart, or continue on to Configuration.

12 Chapter 4. Installation

https://github.com/wmo-im/wis2box/releases

CHAPTER

FIVE

QUICKSTART

5.1 Requirements and dependencies

The quickstart assumes wis2box and its dependencies have been installed. If this is not true, please follow the Instal-
lation steps first.

Successful installation can be confirmed by inspecting the versions on your system.

docker version
docker-compose version
python3 -V

The quickstart deploys wis2box with test data. It is the minimal runtime configuration profile - as used in wis2box
Github CI/CD.

Note: For information on how to quickly get started with your own data out of the box, proceed to Running. For more
information on deployment, see Administration and Configuration.

wis2box passes environment variables from dev.env to its container on startup. The test enviroment file is provided in
tests/test.env. Copy this file to dev.env in your working directory.

cp tests/test.env dev.env

Build and update wis2box

python3 wis2box-ctl.py build
python3 wis2box-ctl.py update

Start wis2box and login to the wis2box container

python3 wis2box-ctl.py start
python3 wis2box-ctl.py login

Once logged in, verify the enviroment

wis2box environment show

Publish test discovery metadata

13

wis2box, Release 0.5.1

wis2box metadata discovery publish $WIS2BOX_DATADIR/metadata/discovery/mwi-surface-
→˓weather-observations.yml
wis2box metadata discovery publish $WIS2BOX_DATADIR/metadata/discovery/ita-surface-
→˓weather-observations.yml
wis2box metadata discovery publish $WIS2BOX_DATADIR/metadata/discovery/dza-surface-
→˓weather-observations.yml

Setup observation collections from discovery metadata

wis2box data add-collection $WIS2BOX_DATADIR/metadata/discovery/mwi-surface-weather-
→˓observations.yml
wis2box data add-collection $WIS2BOX_DATADIR/metadata/discovery/ita-surface-weather-
→˓observations.yml
wis2box data add-collection $WIS2BOX_DATADIR/metadata/discovery/dza-surface-weather-
→˓observations.yml

Ingest data, using data ingest command to push the wis2box-incoming bucket

wis2box data ingest --topic-hierarchy mwi.mwi_met_centre.data.core.weather.surface-based-
→˓observations.SYNOP --path $WIS2BOX_DATADIR/observations/malawi
wis2box data ingest --topic-hierarchy ita.roma_met_centre.data.core.weather.surface-
→˓based-observations.SYNOP --path $WIS2BOX_DATADIR/observations/italy
wis2box data ingest --topic-hierarchy dza.alger_met_centre.data.core.weather.surface-
→˓based-observations.SYNOP --path $WIS2BOX_DATADIR/observations/algeria

Cache and publish stations

wis2box metadata station sync $WIS2BOX_DATADIR/metadata/station/station_list.csv

Logout of wis2box container:

exit

From here, you can run python3 wis2box-ctl.py status to confirm that containers are running.

To explore your wis2box installation and services, visit http://localhost:8999 in your web browser.

14 Chapter 5. Quickstart

http://localhost:8999

CHAPTER

SIX

CONFIGURATION

Once you have installed wis2box, it is time to setup the configuration. wis2box setup is based on a simple configuration
that can be adjusted depending the user’s needs and deployment environment.

6.1 Environment variables

wis2box configuration is driven primarily by a small set of environment variables. The runtime configuration is defined
in the Env format in a plain text file named dev.env and docker/default.env.

Any values set in dev.env override the default environment variables in docker/default.env. For further / spe-
cialized configuration, see the sections below.

6.1.1 WIS2BOX_HOST_DATADIR

The minimum required setting in dev.env is the WIS2BOX_HOST_DATADIR environment variable. Setting this value
is required to map the wis2box data directory from the host system to the containers.

It is recommended to set this value to an absolute path on your system.

6.2 Sections

Note: A reference configuration can always be found in the wis2box GitHub repository. The Quickstart uses a variant
of wis2box.env with mappings to the test data, as an example. For complex installations, it is recommended to start
configuring wis2box by copying the example wis2box.env file and modifying accordingly.

wis2box environment variables can be categorized via the following core sections:

• Storage: MinIO configuration

• API: API configuration for provisioning the OGC API capabilities

• Logging: logging configuaration for wis2box

• PubSub: PubSub options

• Other: other miscellaneous options

Note: Configuration directives and reference are described below via annotated examples. Changes in configuration
require a restart of wis2box to take effect. See the Administration section for information on managing wis2box.

15

https://en.wikipedia.org/wiki/Env
https://github.com/wmo-im/wis2box/blob/main/docker/default.env

wis2box, Release 0.5.1

6.2.1 Storage

wis2box currently supports S3 compatible storage (e.g. MinIO, Amazon S3). Additional storage types are planned for
future releases.

The following environment variables can be used to configure WIS2BOX_STORAGE.

Note: When using wis2box in production and using the default MinIO-container, please specify a unique
WIS2BOX_STORAGE_PASSWORD

WIS2BOX_STORAGE_TYPE=S3
WIS2BOX_STORAGE_SOURCE=http://minio:9000
WIS2BOX_STORAGE_USERNAME=minio # username for the storage-layer
WIS2BOX_STORAGE_PASSWORD=minio123 # password for the storage-layer
WIS2BOX_STORAGE_INCOMING=wis2box-incoming # name of the storage-bucket/folder for␣
→˓incoming files
WIS2BOX_STORAGE_PUBLIC=wis2box-public # name of the storage-bucket/folder for public␣
→˓files
WIS2BOX_STORAGE_ARCHIVE=wis2box-archive # name of the storage-bucket/folder for␣
→˓archived data
WIS2BOX_STORAGE_CONFIG=wis2box-config # name of the storage-bucket/folder for␣
→˓configuration files
WIS2BOX_STORAGE_DATA_RETENTION_DAYS=7 # number of days to keep files in incoming and␣
→˓public

6.2.2 MinIO

wis2box uses MinIO as the default S3 storage capability.

When overriding the default storage environment variables, please redefine the MINIO* environment variables to match
your configuration.

MINIO_ROOT_USER=${WIS2BOX_STORAGE_USERNAME}
MINIO_ROOT_PASSWORD=${WIS2BOX_STORAGE_PASSWORD}
MINIO_NOTIFY_MQTT_USERNAME_WIS2BOX=${WIS2BOX_BROKER_USERNAME}
MINIO_NOTIFY_MQTT_PASSWORD_WIS2BOX=${WIS2BOX_BROKER_PASSWORD}
MINIO_NOTIFY_MQTT_BROKER_WIS2BOX=tcp://${WIS2BOX_BROKER_HOST}:${WIS2BOX_BROKER_PORT}

6.2.3 API

API configurations drive control of the OGC API setup.

WIS2BOX_API_TYPE=pygeoapi # server tpye
WIS2BOX_API_URL=http://localhost:8999/pygeoapi # public landing page endpoint
WIS2BOX_API_BACKEND_TYPE=Elasticsearch # backend provider type
WIS2BOX_API_BACKEND_URL=http://elasticsearch:9200 # internal backend connection URL
WIS2BOX_DOCKER_API_URL # container name of API container (for internal communications/
→˓workflow)

16 Chapter 6. Configuration

wis2box, Release 0.5.1

6.2.4 Logging

The logging directives control logging level/severity and output.

WIS2BOX_LOGGING_LOGLEVEL=ERROR # the logging level (see https://docs.python.org/3/
→˓library/logging.html#logging-levels)
WIS2BOX_LOGGING_LOGFILE=stdout # the full file path to the logfile or ``stdout`` to␣
→˓display on console

6.2.5 PubSub

PubSub configuration provides connectivity information for the PubSub broker.

WIS2BOX_BROKER_HOST=mosquitto # the hostname of the internal broker
WIS2BOX_BROKER_PORT=1883 # the port of the internal broker
WIS2BOX_BROKER_USERNAME=wis2box # the username of the internal broker
WIS2BOX_BROKER_PASSWORD=wis2box # the password of the internal broker
WIS2BOX_BROKER_PUBLIC=mqtt://foo:bar@localhost:1883 # RFC 1738 URL of public broker␣
→˓endpoint

6.2.6 Web application

Web application configuration provides the ability to customize web components.

WIS2BOX_BASEMAP_URL="https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png" # URL of map␣
→˓tile server to use
WIS2BOX_BASEMAP_ATTRIBUTION="OpenStreetMap␣
→˓contributors" # attribution of map tile server

6.2.7 Other

Additional directives provide various configurationscontrol of configuration options for the deployment of wis2box.

WIS2BOX_OSCAR_API_TOKEN=some_token # OSCAR/Surface API token for OSCAR API interaction
WIS2BOX_URL=http://localhost:8999/ # public wis2box url
WIS2BOX_AUTH_STORE=http://wis2box-auth # wis2box auth service location

Note: To access internal containers, URL configurations should point to the named containers as specified in
docker-compose.yml.

A full configuration example can be found below:

please define a data-directory on your host machine
this will map to /data/wis2box on the wis2box-container
WIS2BOX_HOST_DATADIR=/path/to/local/data/directory

Optional
Environment variable overrides

(continues on next page)

6.2. Sections 17

wis2box, Release 0.5.1

(continued from previous page)

WIS2BOX_LOGGING_LOGLEVEL=WARNING
WIS2BOX_DATA_RETENTION_DAYS=30

WIS2BOX_DATADIR_DATA_MAPPINGS=/data/wis2box/data-mappings.yml

data paths and retention
WIS2BOX_DATADIR=/data/wis2box

API
WIS2BOX_API_TYPE=pygeoapi
WIS2BOX_API_URL=http://localhost:8999/oapi
WIS2BOX_API_BACKEND_TYPE=Elasticsearch
WIS2BOX_API_BACKEND_URL=http://elasticsearch:9200
WIS2BOX_DOCKER_API_URL=http://wis2box-api:80/oapi

logging
WIS2BOX_LOGGING_LOGLEVEL=ERROR
WIS2BOX_LOGGING_LOGFILE=stdout

PubSub
WIS2BOX_BROKER_USERNAME=wis2box
WIS2BOX_BROKER_PASSWORD=wis2box
WIS2BOX_BROKER_HOST=mosquitto
WIS2BOX_BROKER_PORT=1883

WIS2BOX_BROKER_PUBLIC=mqtt://wis2box:wis2box@mosquitto:1883

Web application
WIS2BOX_BASEMAP_URL=https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png
WIS2BOX_BASEMAP_ATTRIBUTION=OpenStreetMap␣
→˓contributors

other
WIS2BOX_OSCAR_API_TOKEN=some_token
WIS2BOX_URL=http://localhost:8999

mappings of topic hierarchy to wis2box data plugins
optionally override default mappings from wis2box data plugins
WIS2BOX_DATADIR_DATA_MAPPINGS=${PWD}/data-mappings.yml

access control
WIS2BOX_AUTH_URL=http://wis2box-auth

storage
WIS2BOX_STORAGE_TYPE=S3
WIS2BOX_STORAGE_SOURCE=http://minio:9000
WIS2BOX_STORAGE_USERNAME=minio
WIS2BOX_STORAGE_PASSWORD=minio123
WIS2BOX_STORAGE_INCOMING=wis2box-incoming
WIS2BOX_STORAGE_PUBLIC=wis2box-public
WIS2BOX_STORAGE_ARCHIVE=wis2box-archive
WIS2BOX_STORAGE_CONFIG=wis2box-config

(continues on next page)

18 Chapter 6. Configuration

wis2box, Release 0.5.1

(continued from previous page)

WIS2BOX_STORAGE_DATA_RETENTION_DAYS=7

you should be okay from here

MinIO
MINIO_ROOT_USER=${WIS2BOX_STORAGE_USERNAME}
MINIO_ROOT_PASSWORD=${WIS2BOX_STORAGE_PASSWORD}
MINIO_PROMETHEUS_AUTH_TYPE=public
MINIO_NOTIFY_MQTT_ENABLE_WIS2BOX=on
MINIO_NOTIFY_MQTT_USERNAME_WIS2BOX=${WIS2BOX_BROKER_USERNAME}
MINIO_NOTIFY_MQTT_PASSWORD_WIS2BOX=${WIS2BOX_BROKER_PASSWORD}
MINIO_NOTIFY_MQTT_BROKER_WIS2BOX=tcp://${WIS2BOX_BROKER_HOST}:${WIS2BOX_BROKER_PORT}
MINIO_NOTIFY_MQTT_TOPIC_WIS2BOX=wis2box-storage/minio
MINIO_NOTIFY_MQTT_TOPIC_WIS2BOX=wis2box-storage/minio
MINIO_NOTIFY_MQTT_QOS_WIS2BOX=1

6.3 Docker Compose

The Docker Compose setup is driven from the resulting dev.env file created. For advanced cases and/or power users,
updates can also be made to docker-compose.yml or docker-compose.override.yml (for changes to ports).

6.4 Summary

At this point, you have defined the runtime configuration required to administer your wis2box installation.

6.3. Docker Compose 19

wis2box, Release 0.5.1

20 Chapter 6. Configuration

CHAPTER

SEVEN

ADMINISTRATION

wis2box is designed to be built as a network of virtual machines within a virtual network. Once this is built, users login
into the main wis2box machine to setup their workflow and configurations for data processing and publishing.

The wis2box-ctl.py utility provides a number of tools for managing the wis2box containers.

The following steps provide an example of container management workflow.

build all images
python3 wis2box-ctl.py build

start system
python3 wis2box-ctl.py start

stop system
python3 wis2box-ctl.py stop

view status of all deployed containers
python3 wis2box-ctl.py status

Note: Run python3 wis2box-ctl.py --help for all usage options.

With wis2box now installed and started, it’s time to start up the box and login to the wis2box container:

python3 wis2box-ctl.py start
python3 wis2box-ctl.py login

Now that you are logged into the wis2box container, it’s now time to manage station metadata, discovery metadata and
data processing pipelines.

7.1 Public environment variables

The following environment variables are used for public services:

• WIS2BOX_API_URL: API application

• WIS2BOX_BROKER_PUBLIC: MQTT broker

• WIS2BOX_URL: Web application, including access to data download/object storage

21

wis2box, Release 0.5.1

7.2 Default service ports

A default wis2box installation utilizes the following ports for public services:

7.2.1 Public services

• 8999: Web application, API application, storage

• 1883: Message broker via MQTT

• 8884: Message broker via MQTT/WebSockets

7.2.2 Internal services

• 1883: Message broker

• 9200: Elasticsearch

• 9000: MinIO

• 9001: MinIO admin UI

7.2.3 Changing default ports

The docker/docker-compose.override.yml file provides definitions on utilized ports. To change default ports,
edit docker/default.env before stopping and starting wis2box for changes to take effect.

7.3 MQTT Quality of Service (QoS)

The quality of service level of all wis2box powered brokers is always 1 by default.

22 Chapter 7. Administration

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels

CHAPTER

EIGHT

RUNNING

wis2box workflows can be categorized as design time (interactive) or runtime (automated).

8.1 Design time

• environment creation

• topic hierarchy registration

• station metadata caching

• station metadata API publishing

• discovery metadata API publishing

8.2 Runtime

• automated data processing and publishing

8.3 Running topics

8.3.1 Concepts

Let’s clarify a few concepts as part working with wis2box:

• topic hierarchy: structure defined by WMO to categorize and classify data, allowing for easy and efficient search
and identification

• discovery metadata: description of a dataset to be included in the WIS 2.0 Global Discovery Catalogue

• catalogue: a collection of discovery metadata records

• station metadata: description of the properties of an observing station, which provides observations and mea-
surements

• data mappings: the wis2box mechanism to define and associate a topic hierarchy to a processing pipeline

23

wis2box, Release 0.5.1

8.3.2 Topic hierarchy

Note: The WIS 2.0 topic hierarchy is currently in development. wis2box implementation of the topic hierarchies will
change, based on ratifications/updates of the topic hierarchies in WMO technical regulations and publications.

wis2box implements the WIS 2.0 topic hierarchies, which are designed to efficiently categorize and classify data.

8.3.3 Environment

wis2box initializes the environment when starting, before data processing or publishing. To view the environment, run
the following command:

wis2box environment show

For the purposes of documentation, the value WIS2BOX_DATADIR represents the base directory for all data managed in
wis2box.

The default enviroment variables are below.

data paths and retention
WIS2BOX_DATADIR=/data/wis2box

API
WIS2BOX_API_TYPE=pygeoapi
WIS2BOX_API_URL=http://localhost:8999/oapi
WIS2BOX_API_BACKEND_TYPE=Elasticsearch
WIS2BOX_API_BACKEND_URL=http://elasticsearch:9200
WIS2BOX_DOCKER_API_URL=http://wis2box-api:80/oapi

logging
WIS2BOX_LOGGING_LOGLEVEL=ERROR
WIS2BOX_LOGGING_LOGFILE=stdout

PubSub
WIS2BOX_BROKER_USERNAME=wis2box
WIS2BOX_BROKER_PASSWORD=wis2box
WIS2BOX_BROKER_HOST=mosquitto
WIS2BOX_BROKER_PORT=1883

WIS2BOX_BROKER_PUBLIC=mqtt://wis2box:wis2box@mosquitto:1883

Web application
WIS2BOX_BASEMAP_URL=https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png
WIS2BOX_BASEMAP_ATTRIBUTION=OpenStreetMap␣
→˓contributors

other
WIS2BOX_OSCAR_API_TOKEN=some_token
WIS2BOX_URL=http://localhost:8999

mappings of topic hierarchy to wis2box data plugins
optionally override default mappings from wis2box data plugins

(continues on next page)

24 Chapter 8. Running

https://github.com/wmo-im/wis2-topic-hierarchy

wis2box, Release 0.5.1

(continued from previous page)

WIS2BOX_DATADIR_DATA_MAPPINGS=${PWD}/data-mappings.yml

access control
WIS2BOX_AUTH_URL=http://wis2box-auth

storage
WIS2BOX_STORAGE_TYPE=S3
WIS2BOX_STORAGE_SOURCE=http://minio:9000
WIS2BOX_STORAGE_USERNAME=minio
WIS2BOX_STORAGE_PASSWORD=minio123
WIS2BOX_STORAGE_INCOMING=wis2box-incoming
WIS2BOX_STORAGE_PUBLIC=wis2box-public
WIS2BOX_STORAGE_ARCHIVE=wis2box-archive
WIS2BOX_STORAGE_CONFIG=wis2box-config
WIS2BOX_STORAGE_DATA_RETENTION_DAYS=7

you should be okay from here

MinIO
MINIO_ROOT_USER=${WIS2BOX_STORAGE_USERNAME}
MINIO_ROOT_PASSWORD=${WIS2BOX_STORAGE_PASSWORD}
MINIO_PROMETHEUS_AUTH_TYPE=public
MINIO_NOTIFY_MQTT_ENABLE_WIS2BOX=on
MINIO_NOTIFY_MQTT_USERNAME_WIS2BOX=${WIS2BOX_BROKER_USERNAME}
MINIO_NOTIFY_MQTT_PASSWORD_WIS2BOX=${WIS2BOX_BROKER_PASSWORD}
MINIO_NOTIFY_MQTT_BROKER_WIS2BOX=tcp://${WIS2BOX_BROKER_HOST}:${WIS2BOX_BROKER_PORT}
MINIO_NOTIFY_MQTT_TOPIC_WIS2BOX=wis2box-storage/minio
MINIO_NOTIFY_MQTT_TOPIC_WIS2BOX=wis2box-storage/minio
MINIO_NOTIFY_MQTT_QOS_WIS2BOX=1

8.3.4 Data mappings

Once a topic hierarchy is defined, it needs to be included in the wis2box data mappings configuration. wis2box provides
a default data mapping (in YAML format):

data:
mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP:

plugins:
csv:

- plugin: wis2box.data.csv2bufr.ObservationDataCSV2BUFR
template: synop-bufr.json
notify: true
file-pattern: '^WIGOS_(\d-\d+-\d+-\w+)_.*\.csv$'

bufr4:
- plugin: wis2box.data.bufr2geojson.ObservationDataBUFR2GeoJSON
file-pattern: '^WIGOS_(\d-\d+-\d+-\w+)_.*\.bufr4$'

ita.roma_met_centre.data.core.weather.surface-based-observations.SYNOP:
plugins:

bin:
- plugin: wis2box.data.bufr4.ObservationDataBUFR
notify: true

(continues on next page)

8.3. Running topics 25

wis2box, Release 0.5.1

(continued from previous page)

file-pattern: '^.*\.bin$'
bufr4:

- plugin: wis2box.data.bufr2geojson.ObservationDataBUFR2GeoJSON
file-pattern: '^WIGOS_(\d-\d+-\d+-\w+)_.*\.bufr4$'

dza.alger_met_centre.data.core.weather.surface-based-observations.SYNOP:
plugins:

bufr4:
- plugin: wis2box.data.bufr4.ObservationDataBUFR
notify: true
buckets:
- ${WIS2BOX_STORAGE_INCOMING}

file-pattern: '^.*\.bufr4$'
- plugin: wis2box.data.bufr2geojson.ObservationDataBUFR2GeoJSON
buckets:
- ${WIS2BOX_STORAGE_PUBLIC}

file-pattern: '^WIGOS_(\d-\d+-\d+-\w+)_.*\.bufr4$'

The data mappings are indicated by the data keyword, with each topic having a separate entry specifying:

• plugins: all plugin objects associated with the topic, by file type/extension

Each plugin is based on the file extension to be detected and processed, with the following configuration:

• plugin: the codepath of the plugin

• notify: whether the plugin should publish a data notification

• template: additional argument allowing a mapping template name to be passed to the plugin

• file-pattern: additional argument allowing a file pattern to be passed to the plugin

• buckets: the name(s) of the storage bucket(s) that data should be saved to (See Configuration for more infor-
maiton on buckets)

The default data mapping can be overriden by user-defined data mappings with the following steps:

• create a YAML file similar to the above to include your topic hierarchy

• set the WIS2BOX_DATADIR_DATA_MAPPINGS environment variable to point to the new file of definitions

• restart wis2box

See Extending wis2box for more information on adding your own data processing pipeline.

8.3.5 Station metadata

wis2box is designed to support data ingest and processing of any kind. For observations, processing workflow typically
requires station metadata to be present at runtime.

wis2box provides the ability to cache station metadata from the WMO OSCAR/Surface system.

To cache your stations of interest, create a CSV file formatting per below, specifying one line (with station name and
WIGOS station identifier [WSI]) per station:

station_name,wigos_station_identifier,traditional_station_identifier
Balaka,0-454-2-AWSBALAKA,
Malomo_EPA,0-454-2-AWSMALOMO,
IN-GUEZZAM,0-20000-0-60690,60690
BENI OUNIF,0-12-0-08BECCN60577,60577

26 Chapter 8. Running

https://oscar.wmo.int/surface

wis2box, Release 0.5.1

Use this CSV to cache station metadata:

wis2box metadata station cache /path/to/station_list.csv

Resulting station metadata files (JSON) are stored in WIS2BOX_DATADIR/data/metadata/station and can be used
by wis2box data processing pipelines. These data are required before starting automated processing.

Note: run the command wis2box metadata station sync /path/to/station_list.csv to both cache sta-
tions form OSCAR/Surface and publish station as a collection to the wis2box API

See also:

API publishing

Summary

At this point, you have cached the required station metadata for your given dataset(s).

8.3.6 Discovery metadata

Discovery metadata describes a given dataset or collection. Data being published through a wis2box requires discovery
metadata (describing it) to be created, maintained and published to the wis2box catalogue API.

wis2box supports managing discovery metadata using the WMO Core Metadata Profile (WCMP) 2.0 standard.

Note: WCMP 2.0 is currently in development as part of WMO activities.

Creating a discovery metadata record in wis2box is as easy as completing a YAML configuration file. wis2box leverages
the pygeometa project’s metadata control file (MCF) format. Below is an example MCF file.

wis2box:
retention: P30D
topic_hierarchy: mwi.mwi_met_centre.data.core.weather.surface-based-observations.

→˓SYNOP
data_category: observationsSurfaceLand
country: mwi
center_id: mwi_met_centre

mcf:
version: 1.0

metadata:
identifier: mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP
language: en
language_alternate: fr
charset: utf8
hierarchylevel: dataset
datestamp: 2021-11-29

spatial:
datatype: vector

(continues on next page)

8.3. Running topics 27

https://geopython.github.io/pygeometa
https://geopython.github.io/pygeometa/reference/mcf

wis2box, Release 0.5.1

(continued from previous page)

geomtype: point

identification:
language: en
charset: utf8
title:

en: Surface weather observations from Malawi
abstract:

en: Surface weather observations from Malawi
dates:

creation: 2021-11-29
publication: 2021-11-29

keywords:
default:

keywords:
en:

- surface weather
- temperature
- observations

wmo:
keywords:

en:
- weatherObservations

keywords_type: theme
vocabulary:

name:
en: WMO Category Code

url: https://github.com/wmo-im/wcmp-codelists/blob/main/codelists/WMO_
→˓CategoryCode.csv

wis2:
keywords:

en:
- mw.malawi.weatherObservations.dataset_name

keywords_type: theme
vocabulary:

name:
en: WMO Core Metadata profile topic hierarchy

url: https://github.com/wmo-im/wcmp2-codelists/blob/main/codelists/topic_
→˓hierarchy.csv

topiccategory:
- climatologyMeteorologyAtmosphere

extents:
spatial:

- bbox: [32.6881653175,-16.8012997372,35.7719047381,-9.23059905359]
crs: 4326

temporal:
- begin: 2021-11-29
end: null
resolution: P1H

fees: None
accessconstraints: otherRestrictions

(continues on next page)

28 Chapter 8. Running

wis2box, Release 0.5.1

(continued from previous page)

rights:
en: WMO Unified Policy for the International Exchange of Earth System Data

url: https://example.org/malawi-surface-weather-observations
status: onGoing
maintenancefrequency: continual

contact:
pointOfContact: &contact_poc

organization: Department of Climate Change and Meteorologial Services (DCCMS)
url: https://www.metmalawi.gov.mw
individualname: Firstname Lastname
positionname: Position Name
phone: +265-1-822-014
fax: +265-1-822-215
address: P.O. Box 1808
city: Blantyre
administrativearea: Blantyre District
postalcode: M3H 5T4
country: Malawi
email: you@example.org
hoursofservice: 0700h - 1500h UTC
contactinstructions: email

distributor: *contact_poc

dataquality:
scope:

level: dataset
lineage:

statement: this data was generated by the csv2bufr tool

Note: There are no conventions to the MCF filename. The filename does not get used/exposed or published. It is up
to the user to determine the best filename, keeping in mind your wis2box system may manage and publish numerous
datasets (and MCF files) over time.

Summary

At this point, you have created discovery metadata for your given dataset(s).

8.3.7 Data ingest, processing and publishing

At this point, the system is ready for ingest/processing and publishing.

Data ingest, processing and publishing can be run in automated fashion or via the wis2box CLI. Data is ingested,
processed, and published as WMO BUFR data, as well as GeoJSON features.

Warning: GeoJSON data representations provided in wis2box are in development and are subject to change based
on evolving requirements for observation data representations in WIS 2.0 technical regulations.

8.3. Running topics 29

wis2box, Release 0.5.1

Interactive ingest, processing and publishing

The wis2box CLI provides a data subsystem to process data interactively. CLI data ingest/processing/publishing can
be run with explicit or implicit topic hierarchy routing (which needs to be tied to the pipeline via the Data mappings).

Explicit topic hierarchy workflow

process a single CSV file
wis2box data ingest --topic-hierarchy foo.bar.baz -p /path/to/file.csv

process a directory of CSV files
wis2box data ingest --topic-hierarchy foo.bar.baz -p /path/to/dir

process a directory of CSV files recursively
wis2box data ingest --topic-hierarchy foo.bar.baz -p /path/to/dir -r

Implicit topic hierarchy workflow

process incoming data; topic hierarchy is inferred from fuzzy filepath equivalent
wis2box will detect 'foo/bar/baz' as topic hierarchy 'foo.bar.baz'
wis2box data ingest -p /path/to/foo/bar/baz/data/file.csv

Event driven ingest, processing and publishing

Once all metadata and topic hierarchies are setup, event driven workflow will immediately start to listen on files in the
wis2box-incoming storage bucket as they are placed in the appropriate topic hierarchy directory.

Summary

Congratulations! At this point, you have successfully setup a wis2box data pipeline. Data should be flowing through
the system.

8.3.8 Data pipeline plugins

Driven by topic hierarchies, wis2box is a plugin architecture orchestrating all the required components of a WIS 2.0
node. wis2box also provides a data pipeline plugin architecture which allows for users to define a plugin based on a
topic hierarchy to publish incoming data (see Data mappings for more information).

See also:

Extending wis2box

See also:

Data mappings

30 Chapter 8. Running

wis2box, Release 0.5.1

Default pipeline plugins

wis2box provides a number of data pipeline plugins which users can be used “out of the box”.

wis2box.data.csv2bufr.ObservationDataCSV2BUFR

This plugin converts CSV observation data into BUFR using csv2bufr. A csv2bufr template can be configured to
process the data accordingly. In addition, file-pattern can be used to filter on incoming data based on a regular
expression. Consult the csv2bufr documentation for more information on configuration and templating.

wis2box.data.bufr4.ObservationDataBUFR2GeoJSON

This plugin converts BUFR observation data into GeoJSON using bufr2geojson. A file-pattern can be used to
filter on incoming data based on a regular expression. Consult the bufr2geojson documentation for more information
on configuration and templating.

wis2box.data.geojson.ObservationDataGeoJSON

This plugin is for the purposes of publishing GeoJSON data to the API.

8.3.9 API publishing

When wis2box starts, the API provisioning environment is initialized. At this stage, the following steps are required:

• station metadata has been configured

• discovery metadata has been created

• data pipelines are configured and running

Let’s dive into publishing the data and metadata:

wis2box provides an API supporting the OGC API standards using pygeoapi.

Station metadata API publishing

The first step is to publish our station metadata to the API. The command below will generate local station collection
GeoJSON for pygeoapi publication.

wis2box metadata station publish-collection

Note: run the command wis2box metadata station sync /path/to/station_list.csv to both cache sta-
tions from OSCAR/Surface and publish station as a collection to the wis2box API

See also:

Station metadata

8.3. Running topics 31

https://ogcapi.ogc.org
https://pygeoapi.io

wis2box, Release 0.5.1

Discovery metadata API publishing

This step will publish dataset discovery metadata to the API.

wis2box metadata discovery publish /path/to/discovery-metadata.yml

Dataset collection API publishing

The below command will add the dataset collection to pygeoapi from the discovery metadata MCF created as described
in the Discovery metadata section.

wis2box data add-collection $WIS2BOX_DATADIR/data/config/foo/bar/baz/discovery-metadata.
→˓yml

To delete the colection from the API backend and configuration:

wis2box api delete-collection foo.bar.baz

Note: Changes to the API configuration are reflected and updated automatically.

Summary

At this point, you have successfully published the required data and metadata collections to the API.

8.3.10 Data retention

wis2box is configured to set data retention according to your requirements. Data retention is managed via the
WIS2BOX_STORAGE_DATA_RETENTION_DAYS environment variable as part of configuring wis2box.

Cleaning

Cleaning applies to storage defined by WIS2BOX_STORAGE_PUBLIC and involves the deletion of files after set amount
of time.

Cleaning is performed by default daily at 0Z by the system, and can also be run interactively with:

delete data older than WIS2BOX_STORAGE_DATA_RETENTION_DAYS by default
wis2box data clean

delete data older than --days (force override)
wis2box data clean --days=30

32 Chapter 8. Running

wis2box, Release 0.5.1

Archiving

Archiving applies to storage defined by WIS2BOX_STORAGE_INCOMING and involves moving files to the storage defined
by WIS2BOX_STORAGE_ARCHIVE.

Archive is performed on incoming data by default daily at 1Z by the system, and can also be run interactively with:

wis2box data archive

Only files with a timestamp older than one hour are considered for archiving.

8.3.11 Too Long Didn’t Read

For the truly impatient, this section summarizes the steps to required to run wis2box from example configurations.

Environment

wis2box passes environment variables from dev.env to its containers on startup. An example file is provided in
examples/config/wis2box.env. Copy this file to your working directory, and update it to suit your needs.

cp examples/config/wis2box.env dev.env

Note: You must map WIS2BOX_HOST_DATADIR to the absolute path of directory on your host machine.

For terminals that support environment variables, it may be useful to also define environment variables locally. For
terminals that do not support environment variables, you will need to define the asolute path to your data directory.

source
. dev.env
verify
echo $WIS2BOX_HOST_DATADIR

Data mappings

To start processing your own data, you need to define a data mappings file. Example mapping files are provided in
examples/config:

• examples/config/synop-bufr-mappings.yml, input is .bufr containing SYNOP observation-data

• examples/config/synop-csv-mappings.yml, input is .csv containing SYNOP observation-data

To publish .bufr files of SYNOP data:

cp examples/config/synop-bufr-mappings.yml $WIS2BOX_HOST_DATADIR/data-mappings.yml

Edit $WIS2BOX_HOST_DATADIR/data-mappings.yml and change [iso3c_country].[center_id].data.
core.weather.surface-based-observations.SYNOP:

• replace iso3c_country with your corresponding ISO 3166 alpha-3 code.

• replace center_id with the string identifying the center running the wis2node.

8.3. Running topics 33

wis2box, Release 0.5.1

Station metadata

wis2box needs to have a station_list.csv that contains the stations that will be sending data. An example is provided in
examples/config/station_list.csv. Update the file with your stations.

cp examples/config/station_list.csv $WIS2BOX_HOST_DATADIR/station_list.csv

Discovery metadata

Discovery metadata is central to wis2box, wis2box-api, and wis2box-ui. An example is provided in examples/
config/surface-weather-observations.yml.

cp examples/config/surface-weather-observations.yml $WIS2BOX_HOST_DATADIR/surface-
→˓weather-observations.yml

Edit the file $WIS2BOX_HOST_DATADIR/surface-weather-observations.yml to provide the correct metadata for
your dataset:

• replace [iso3c_country].[center_id].data.core.weather.surface-based-observations.SYNOP
with the topic you used in $WIS2BOX_HOST_DATADIR/data-mappings.yml previously

• text provided in title and abstract will be displayed in wis2box-ui

• provide a valid bounding-box in bbox

Build wis2box

Run the build and update commands to set up wis2box. This will start the process of building the wis2box containers
from source.

python3 wis2box-ctl.py build
python3 wis2box-ctl.py update

This might take a while the first time.

Start wis2box

Start wis2box containers and check that all services are running (and healthy).

python3 wis2box-ctl.py start
python3 wis2box-ctl.py status

If neccessary repeat the command until all services are up and running.

34 Chapter 8. Running

wis2box, Release 0.5.1

Runtime configuration

The last design-time steps required to run wis2box are once wis2box is running.

Login to the wis2box container

python3 wis2box-ctl.py login

Note: $WIS2BOX_DATADIR is the location that $WIS2BOX_HOST_DATADIR binds to the container. This allows
wis2box command to access the configuration files from inside the wis2box container.

Setup observation data processing and API publication:

wis2box data add-collection $WIS2BOX_DATADIR/surface-weather-observations.yml

Cache and publish station collection and discovery metadata to the API:

wis2box metadata discovery publish $WIS2BOX_DATADIR/surface-weather-observations.yml
wis2box metadata station sync $WIS2BOX_DATADIR/station_list.csv

Logout of wis2box container:

exit

Data ingest

The runtime component of wis2box is data ingestion. This is an event driven workflow driven by s3 notifications from
uploading data to wis2box-storage. An example is provided in examples/scripts/copy_to_incoming.py. To access the
storage component, visit http://localhost:9001 in your web browser. The default username/password is minio/minio123

Debugging

Something’s now working? wis2box includes a local grafana-instance to help you collect and view logs and figure out
what’s wrong. Visit http://localhost:3000 in your local web browser to view the local grafana instance.

wis2box-ui

wis2box includes a UI to view the data that has been ingested. To explore, visit http://localhost:8999 in your web
browser.

Not seeing data? After data has been ingested for a station for the first time, you need to re-publish the stations. This
will republish the station with a link relation to any associated observation collection.

python3 wis2box-ctl.py execute wis2box metadata station publish-collection

8.3. Running topics 35

http://localhost:9001
http://localhost:3000
http://localhost:8999

wis2box, Release 0.5.1

36 Chapter 8. Running

CHAPTER

NINE

STORAGE

9.1 Overview

The default wis2box storage capability is powered by MinIO, which provides S3 compatible object storage.

The default wis2box MinIO administration user interface can be accessed locally at http://localhost:9001.

The username/password for MinIO is configured through environment variables (see Configuration).

37

https://www.min.io

wis2box, Release 0.5.1

Once logged in, buckets can be managed via the default “Buckets” menu item (click “Manage”). Click “Browse”
provides a browsing capability for a storage administrator.

38 Chapter 9. Storage

wis2box, Release 0.5.1

9.2 Uploading data to MinIO

Files can uploaded to the MinIO bucket in a number of ways. Any new file received on MinIO will trigger an MQTT
notification which is received by wis2box.

Below are basic examples on sending data to the MinIO wis2box-incoming bucket. For more information and addi-
tional examples, consult the official MinIO documentation.

9.2.1 Using the boto3 Python Client

Install the Python boto3 package via pip:

pip3 install boto3

The below example copies a local file (myfile.csv) to the wis2box-incoming bucket with topic foo.bar.baz:

import boto3

endpoint_url = '<your-wis2box-url>'
filename = 'myfile.csv'

session = boto3.Session(
aws_access_key_id='wis2box',

(continues on next page)

9.2. Uploading data to MinIO 39

https://docs.min.io
https://pip.pypa.io

wis2box, Release 0.5.1

(continued from previous page)

aws_secret_access_key='Wh00data!'
)

s3client = session.client('s3', endpoint_url=endpoint_url)

with open(filename, 'rb') as fh:
s3client.upload_fileobj(fh, 'wis2box-incoming', f'foo/bar/baz/{filename}')

To allow uploading files into MinIO remotely, the wis2box-incoming bucket is proxied via Nginx.

For example, to upload the local file (WIGOS_0-454-2-AWSNAMITAMBO_2021-11-18T0955.csv with topic) with
topic mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP via the Nbinx proxy:

import boto3

endpoint_url = 'http://localhost:9000'
filename = 'myfile.csv'

session = boto3.Session(
aws_access_key_id='wis2box',
aws_secret_access_key='Wh00data!'

)

s3client = session.client('s3', endpoint_url=endpoint_url)

filename = 'WIGOS_0-454-2-AWSNAMITAMBO_2021-11-18T0955.csv'

with open(filename, 'rb') as f:
s3client.upload_fileobj(f, 'wis2box-incoming', f'data/core/observations-surface-land/

→˓mw/FWCL/landFixed/{filename}')

9.2.2 Using the MinIO Python Client

MinIO provides a Python client which can be used as follows:

Install the Python minio module via pip:

pip3 install minio

The below example copies a local file (myfile.csv) to the wis2box-incoming bucket to topic foo.bar.baz:

from minio import Minio

client = Minio(
'localhost:9000',
access_key='minio',
secret_key='minio123',
secure=False

)

client.fput_object('wis2box-incoming', 'myfile.csv', '/foo/bar/baz/myfile.csv')

40 Chapter 9. Storage

https://pip.pypa.io

wis2box, Release 0.5.1

9.2.3 Using S3cmd

Given MinIO is S3 compatible, data can be uploaded using generic S3 tooling. The below example uses S3cmd to
upload data to wis2box MinIO storage:

Edit the following fields in ~/.s3cfg:

cat << EOF > ~/.s3cfg
Setup endpoint
host_base = localhost:9000
use_https = False

Setup access keys
access_key = minio
secret_key = minio123
EOF

Below is a simple command line example to copy a local file called myfile.csv into the wis2box-incoming bucket,
to topic foo/bar/baz:

s3cmd myfile.csv s3://wis2box-incoming/foo/bar/baz

9.2.4 Using the MinIO UI

Files can also be uploaded interactively via the MinIO adminstration interface. The example below demonstrates this
capability when browsing the wis2box-incoming bucket:

9.2. Uploading data to MinIO 41

https://s3tools.org/s3cmd

wis2box, Release 0.5.1

42 Chapter 9. Storage

CHAPTER

TEN

MONITORING

wis2box has built-in monitoring functions based on Prometheus, Loki and Grafana.

The Grafana endpoint can be visualized at http://localhost/monitoring.

Grafana uses two data sources to display monitoring data:

• Prometheus: actively ‘scrapes’ data from the configured prometheus-client exporters every X seconds

• Loki: logging endpoint for the Docker containers that compose the wis2box

10.1 Prometheus exporters for wis2box

The exporters for wis2box are based on the Prometheus Python Client

• mqtt_metric_collector: collects data on messages published, using an mqtt-session subscribed to the wis2box-
broker

wis2box also analyzes prometheus metrics from MinIO.

Note: For more information see the list of supported MinIO metrics

10.2 Loki logging

The logs of the following Docker containers are sent to Loki:

• mqp-publisher

• wis2box

• wis2box-ui

• mosquitto

• wis2box-api

• wis2box-auth

43

https://prometheus.io/docs/introduction/overview/
https://grafana.com/docs/loki/latest/
https://grafana.com/docs/grafana/latest/
http://localhost/monitoring
https://github.com/prometheus/client_python
https://github.com/minio/minio/blob/master/docs/metrics/prometheus/list.md

wis2box, Release 0.5.1

10.3 Monitoring topics

10.3.1 Grafana dashboards

wis2box provides a Grafana dashboard in order to visualize and analyze various metrics.

Go to http://localhost:3000 to see the home dashboard of wis2box once the stack is running.

Note: The dashboard configuration can be found in docker/grafana/dashboards/home.json.

10.3.2 Exploring logs

You can explore logs by selecting explore from the side-bar in Grafana.

Select wis2box-loki as a data source to browse the logs produced by the Docker containers that compose wis2box:

44 Chapter 10. Monitoring

http://localhost:3000

wis2box, Release 0.5.1

10.3. Monitoring topics 45

wis2box, Release 0.5.1

46 Chapter 10. Monitoring

CHAPTER

ELEVEN

SERVICES

wis2box provides a number of data access services and mechanisms in providing data to users, applications and beyond.

11.1 Discovery Catalogue

The discovery catalogue is powered by OGC API - Records and is located at http://localhost:8999/oapi/collections/
discovery-metadata

The OGC API endpoint is located by default at http://localhost:8999/oapi. The discovery catalogue endpoint is located
at http://localhost:8999/oapi/collections/discovery-metadata

Below are some examples of working with the discovery catalogue.

• description of catalogue: http://localhost:8999/oapi/collections/discovery-metadata

• catalogue queryables: http://localhost:8999/oapi/collections/discovery-metadata/queryables

• catalogue queries

– records (browse): http://localhost:8999/oapi/collections/discovery-metadata/items

– query by spatial (bounding box): http://localhost:8999/oapi/collections/discovery-metadata/items?bbox=
32,-17,36,-8

– query by temporal extent (since): http://localhost:8999/oapi/collections/discovery-metadata/items?
datetime=2021/..

– query by temporal extent (before): http://localhost:8999/oapi/collections/discovery-metadata/items?
datetime=../2022

– query by freetext: http://localhost:8999/oapi/collections/discovery-metadata/items?q=observations

Note:

• adding f=json to URLs will provide the equivalent JSON/GeoJSON representations

• query predicates (datetime, bbox, q, etc.) can be combined

See also:

Data access

47

https://ogcapi.ogc.org/records
http://localhost:8999/oapi/collections/discovery-metadata
http://localhost:8999/oapi/collections/discovery-metadata
http://localhost:8999/oapi
http://localhost:8999/oapi/collections/discovery-metadata
http://localhost:8999/oapi/collections/discovery-metadata
http://localhost:8999/oapi/collections/discovery-metadata/queryables
http://localhost:8999/oapi/collections/discovery-metadata/items
http://localhost:8999/oapi/collections/discovery-metadata/items?bbox=32,-17,36,-8
http://localhost:8999/oapi/collections/discovery-metadata/items?bbox=32,-17,36,-8
http://localhost:8999/oapi/collections/discovery-metadata/items?datetime=2021/
http://localhost:8999/oapi/collections/discovery-metadata/items?datetime=2021/
http://localhost:8999/oapi/collections/discovery-metadata/items?datetime=../2022
http://localhost:8999/oapi/collections/discovery-metadata/items?datetime=../2022
http://localhost:8999/oapi/collections/discovery-metadata/items?q=observations

wis2box, Release 0.5.1

11.2 Data API

wis2box data is made available via OGC API - Features and is located at http://localhost:8999/oapi standards.

The OGC API endpoint is located by default at http://localhost:8999/oapi

Below are some examples of working with the discovery catalogue.

Note:

• the examples below use the mwi.mwi_met_centre.data.core.weather.surface-based-observations.
SYNOP collection as described in the Quickstart. For other dataset collections, use the same query patterns below,
substituting the collection id accordingly

• list of dataset collections: http://localhost:8999/oapi/collections

• collection description: http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.
surface-based-observations.SYNOP

• collection queryables: http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.
surface-based-observations.SYNOP/queryables

• collection items (browse): http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.
surface-based-observations.SYNOP/items

• collection queries

– set limit/offset (paging): http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.
surface-based-observations.SYNOP/items?limit=1&startindex=2

– query by spatial (bounding box): http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.
weather.surface-based-observations.SYNOP/items?bbox=32,-17,36,-8

– query by temporal extent (since): http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.
weather.surface-based-observations.SYNOP/items?datetime=2021/..

– query by temporal extent (before): http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.
weather.surface-based-observations.SYNOP/items?datetime=../2022

Note:

• adding f=json to URLs will provide the equivalent JSON/GeoJSON representations

• query predicates (datetime, bbox, q, etc.) can be combined

See also:

Data access

48 Chapter 11. Services

https://ogcapi.ogc.org/features
http://localhost:8999/oapi
http://localhost:8999/oapi
http://localhost:8999/oapi/collections
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/queryables
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/queryables
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/items
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/items
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/items?limit=1&startindex=2
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/items?limit=1&startindex=2
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/items?bbox=32,-17,36,-8
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/items?bbox=32,-17,36,-8
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/items?datetime=2021/
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/items?datetime=2021/
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/items?datetime=../2022
http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP/items?datetime=../2022

wis2box, Release 0.5.1

11.2.1 Management API

The Data API also provides a management API to manage resources in alignment with OGC API - Features - Part 4:
Create, Replace, Update and Delete.

11.3 SpatioTemporal Asset Catalog (STAC)

The wis2box SpatioTemporal Asset Catalog (STAC) endpoint can be found at:

http://localhost:8999/stac

. . . providing the user with a crawlable catalogue of all data on a wis2box.

11.4 Web Accessible Folder (WAF)

The wis2box Web Accessible Folder publich bucket endpoint can be found at:

http://localhost:8999/data/

. . . providing the user with a crawlable online folder of all data on a wis2box.

11.5 Broker

The wis2box broker is powered by MQTT and can be found at:

mqtt://localhost:1883

. . . providing a PubSub capability for event driven subscription and access.

11.6 Adding services

wis2box’s architecture allows for additional services as required by adding Docker containers. Examples of additional
services include adding a container for a samba share or FTP server. Key considerations for adding services:

• Storage buckets can be found at http://minio:9000

• Elasticsearch indexes can be found at the container/URL http://elasticsearch:9200

Examples of additional services can be found in docker/extras.

11.3. SpatioTemporal Asset Catalog (STAC) 49

https://docs.ogc.org/DRAFTS/20-002.html
https://docs.ogc.org/DRAFTS/20-002.html
https://stacspec.org
http://localhost:8999/stac
http://localhost:8999/data/
https://mqtt.org
http://minio:9000

wis2box, Release 0.5.1

50 Chapter 11. Services

CHAPTER

TWELVE

AUTHENTICATION AND ACCESS CONTROL

wis2box provides built in access control for the WAF and API on a topic hierarchy basis. Configuration is done using the
wis2box command line utility. Authentication tokens are only required for topics that have access control configured.

12.1 Adding Access Control

All topic hierarchies in wis2box are open by default. A topic becomes closed, with access control applied, the first time
a token is generated for a topic hierarchy.

Note: Make sure you are logged into the wis2box container when using the wis2box CLI

wis2box auth add-token --topic-hierarchy mwi.mwi_met_centre.data.core.weather.surface-
→˓based-observations.SYNOP mytoken

If no token is provided, a random string will be generated. Be sure to the record token now, there is no way to retrieve
it once it is lost.

12.2 Authenticating

Token credentials can be validated using the wis2box command line utility.

wis2box auth show
wis2box auth has-access --topic-hierarchy mwi.mwi_met_centre.data.core.weather.surface-
→˓based-observations.SYNOP mytoken
wis2box auth has-access --topic-hierarchy mwi.mwi_met_centre.data.core.weather.surface-
→˓based-observations.SYNOP notmytoken

Once a token has been generated, access to any data of that topic in the WAF or API requires token authentication.
Tokens are passed as a bearer token in the Authentication header or as an argument appended to the URI. Headers can
be easily added to requests using cURL.

curl -H "Authorization: Bearer mytoken" "http://localhost:8999/oapi/collections/mwi.mwi_
→˓met_centre.data.core.weather.surface-based-observations.SYNOP"
curl -H "Authorization: Bearer notmytoken" "http://localhost:8999/oapi/collections/mwi.
→˓mwi_met_centre.data.core.weather.surface-based-observations.SYNOP"

51

https://curl.se/

wis2box, Release 0.5.1

12.3 Removing Access Control

A topic becomes open and no longer requires authentication when all tokens have been deleted. This can be done by
deleting individual tokens, or all tokens for a given topic hierarchy.

wis2box auth remove-tokens --topic-hierarchy mwi.mwi_met_centre.data.core.weather.
→˓surface-based-observations.SYNOP
wis2box auth show

12.4 Extending Access Control

wis2box provides access control out of the box with subrequests to wis2box-auth. wis2box-auth could be replaced
in nginx for another auth server like Gluu or a Web SSO like LemonLDAP or Keycloak. These services are not yet
configurable via the wis2box command line utility.

wis2box is intentionally plug and playable. Beyond custom authentication servers, extending wis2box provides an
overview of more modifications that can be made to wis2box.

52 Chapter 12. Authentication and Access control

https://gluu.org/
https://lemonldap-ng.org/
https://www.keycloak.org/

CHAPTER

THIRTEEN

DATA ACCESS

13.1 Overview

This section provides examples of interacting with wis2box data services as described in Services using a number of
common tools and software packages.

13.2 API

13.2.1 Using Python, requests and Pandas

Python is a popular programming language which is heavily used in the data science domains. Python provides
high level functionality supporting rapid application development with a large ecosystem of packages to work with
weather/climate/water data.

Let’s use the Python requests package to further interact with the wis2box API, and Pandas to run some simple summary
statistics.

[1]: import json

import requests

def pretty_print(input):
print(json.dumps(input, indent=2))

define the endpoint of the OGC API
api = 'http://localhost:8999/oapi'

Stations

Let’s find all the stations in our wis2box:

[2]: url = f'{api}/collections/stations/items?limit=50'

response = requests.get(url).json()

print(f"Number of stations: {response['numberMatched']}")

(continues on next page)

53

https://www.python.org
https://docs.python-requests.org
https://pandas.pydata.org

wis2box, Release 0.5.1

(continued from previous page)

print('Stations:\n')
for station in response['features']:

print(station['properties']['name'])

Number of stations: 26
Stations:

NAMBUMA
BALAKA
BILIRA
CHIDOOLE
CHIKANGAWA
CHIKWEO
CHINGALE
KALAMBO
KASIYA AWS
KASUNGU NATIONAL PARK AWS
KAWALAZI
KAYEREKERA
LENGWE NATIONAL PARK
LOBI AWS
MAKANJIRA
MALOMO
MISUKU
MLARE
MLOMBA
MTOSA BENGA
NAMITAMBO
NANKUMBA
NKHOMA UNIVERSITY
NKHULAMBE
NYACHILENDA
TOLEZA

Discovery Metadata

Now, let’s find all the dataset that are provided by the above stations. Each dataset is identified by a WIS 2.0 discovery
metadata record.

[3]: url = f'{api}/collections/discovery-metadata/items'

response = requests.get(url).json()

print('Datasets:\n')
for dataset in response['features']:

print(f"id: {dataset['properties']['id']}, title: {dataset['properties']['title']}")

Datasets:

id: data.core.test-passthrough, title: Surface weather observations (passthrough)
id: mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP, title:␣
→˓Surface weather observations (hourly)

54 Chapter 13. Data access

wis2box, Release 0.5.1

Let’s find all the data access links associated with the Surface weather observations (hourly) dataset:

[4]: dataset_id = 'mwi.mwi_met_centre.data.core.weather.surface-based-observations.SYNOP'

url = f"{api}/collections/discovery-metadata/items/{dataset_id}"

response = requests.get(url).json()

print('Data access links:\n')
for link in response['links']:

print(f"{link} {link['href']} ({link['type']}) {link['rel']}")
link['rel']

[link['href'] for link in response['links']]

Data access links:

{'rel': 'self', 'type': 'application/geo+json', 'title': 'This document as GeoJSON',
→˓'href': 'http://localhost:8999/oapi/collections/discovery-metadata/items/mwi.mwi_met_
→˓centre.data.core.weather.surface-based-observations.SYNOP?f=json'} http://localhost:
→˓8999/oapi/collections/discovery-metadata/items/mwi.mwi_met_centre.data.core.weather.
→˓surface-based-observations.SYNOP?f=json (application/geo+json) self
{'rel': 'alternate', 'type': 'application/ld+json', 'title': 'This document as RDF (JSON-
→˓LD)', 'href': 'http://localhost:8999/oapi/collections/discovery-metadata/items/mwi.mwi_
→˓met_centre.data.core.weather.surface-based-observations.SYNOP?f=jsonld'} http://
→˓localhost:8999/oapi/collections/discovery-metadata/items/mwi.mwi_met_centre.data.core.
→˓weather.surface-based-observations.SYNOP?f=jsonld (application/ld+json) alternate
{'rel': 'alternate', 'type': 'text/html', 'title': 'This document as HTML', 'href':
→˓'http://localhost:8999/oapi/collections/discovery-metadata/items/mwi.mwi_met_centre.
→˓data.core.weather.surface-based-observations.SYNOP?f=html'} http://localhost:8999/oapi/
→˓collections/discovery-metadata/items/mwi.mwi_met_centre.data.core.weather.surface-
→˓based-observations.SYNOP?f=html (text/html) alternate
{'rel': 'collection', 'type': 'application/json', 'title': 'Discovery metadata', 'href':
→˓'http://localhost:8999/oapi/collections/discovery-metadata'} http://localhost:8999/
→˓oapi/collections/discovery-metadata (application/json) collection

[4]: ['http://localhost:8999/oapi/collections/discovery-metadata/items/mwi.mwi_met_centre.
→˓data.core.weather.surface-based-observations.SYNOP?f=json',
'http://localhost:8999/oapi/collections/discovery-metadata/items/mwi.mwi_met_centre.
→˓data.core.weather.surface-based-observations.SYNOP?f=jsonld',
'http://localhost:8999/oapi/collections/discovery-metadata/items/mwi.mwi_met_centre.
→˓data.core.weather.surface-based-observations.SYNOP?f=html',
'http://localhost:8999/oapi/collections/discovery-metadata']

Let’s use the OGC API - Features (OAFeat) link to drill into the observations for Chidoole station

[5]: dataset_api_link = 'http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.
→˓weather.surface-based-observations.SYNOP'

dataset_api_link

[5]: 'http://localhost:8999/oapi/collections/mwi.mwi_met_centre.data.core.weather.surface-
→˓based-observations.SYNOP'

13.2. API 55

wis2box, Release 0.5.1

Observations

Let’s inspect some of the data in the API’s raw GeoJSON format:

[6]: url = f'{dataset_api_link}/items'

query_parameters = {
'wigos_station_identifier': '0-454-2-AWSCHIDOOLE',
'limit': 10000,
'name': 'air_temperature'

}

response = requests.get(url, params=query_parameters).json()

pretty_print(response['features'][0])

{
"id": "WIGOS_0-454-2-AWSCHINGALE_20220112T135500-25",
"reportId": "WIGOS_0-454-2-AWSCHINGALE_20220112T135500",
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [
35.11,
-15.24,
623.0

]
},
"properties": {
"wigos_station_identifier": "0-454-2-AWSCHINGALE",
"phenomenonTime": "2022-01-12T13:55:00Z",
"resultTime": "2022-01-12T13:55:00Z",
"name": "air_temperature",
"value": 24.85,
"units": "Celsius",
"description": null,
"metadata": [
{
"name": "station_or_site_name",
"value": null,
"units": "CCITT IA5",
"description": "Chingale"

},
{
"name": "station_type",
"value": 0,
"units": "CODE TABLE",
"description": "Automatic"

},
{
"name": "height_of_barometer_above_mean_sea_level",
"value": 624.0,
"units": "m",
"description": null

(continues on next page)

56 Chapter 13. Data access

wis2box, Release 0.5.1

(continued from previous page)

},
{
"name": "height_of_sensor_above_local_ground_or_deck_of_marine_platform",
"value": 1.5,
"units": "m",
"description": null

}
],
"index": 25,
"fxxyyy": "012101",
"id": "WIGOS_0-454-2-AWSCHINGALE_20220112T135500-25"

}
}

Let’s inspect what’s measured at Chidoole:

[7]: print('Observed property:\n')
feature = response['features'][9]
print(f"{feature['properties']['name']} ({feature['properties']['units']})")

Observed property:

air_temperature (Celsius)

Pandas

Let’s use the GeoJSON to build a more user-friendly table

[8]: import pandas as pd

datestamp = [obs['properties']['resultTime'] for obs in response['features']]
air_temperature = [obs['properties']['value'] for obs in response['features']]

d = {
'Date/Time': datestamp,
'Air temperature (°C)': air_temperature

}

df = pd.DataFrame(data=d)

[9]: df

[9]: Date/Time Air temperature (°C)
0 2022-01-12T13:55:00Z 24.85
1 2022-01-12T14:55:00Z 27.25
2 2022-01-12T15:55:00Z 26.65
3 2022-01-12T16:55:00Z 25.95
4 2022-01-12T17:55:00Z 25.45
...
5101 2022-06-09T12:55:00Z 21.35
5102 2022-06-09T13:55:00Z 22.25
5103 2022-06-09T14:55:00Z 20.25

(continues on next page)

13.2. API 57

wis2box, Release 0.5.1

(continued from previous page)

5104 2022-06-10T12:55:00Z 23.75
5105 2022-06-10T14:55:00Z 21.15

[5106 rows x 2 columns]

[10]: print("Time extent\n")
print(f'Begin: {df["Date/Time"].min()}')
print(f'End: {df["Date/Time"].max()}')

print("Summary statistics:\n")
df[['Air temperature (°C)']].describe()

Time extent

Begin: 2022-01-12T13:55:00Z
End: 2022-06-10T14:55:00Z
Summary statistics:

[10]: Air temperature (°C)
count 5106.000000
mean 23.541559
std 4.053172
min 13.550000
25% 20.950000
50% 23.350000
75% 26.350000
max 37.850000

[]:

13.2.2 Using Python and OWSLib

OWSLib is a Python package which provides Pythonic access to OGC APIs and web services. Let’s see how easy it is
to work with wis2box with standards-based tooling:

[1]: from owslib.ogcapi.features import Features

import pandas as pd

def pretty_print(input):
print(json.dumps(input, indent=2))

api = 'http://localhost:8999/oapi'

Let’s load the wis2box API into OWSLib and inspect some data

[2]: oafeat = Features(api)

collections = oafeat.collections()
(continues on next page)

58 Chapter 13. Data access

https://geopython.github.io/OWSLib

wis2box, Release 0.5.1

(continued from previous page)

print(f'This OGC API Features endpoint has {len(collections["collections"])} datasets')

for dataset in collections['collections']:
print(dataset['title'])

malawi_obs = oafeat.collection_items('mwi.mwi_met_centre.data.core.weather.surface-based-
→˓observations.SYNOP')
malawi_obs_df = pd.DataFrame(malawi_obs['features'])

then filter by station
obs = oafeat.collection_items('mwi.mwi_met_centre.data.core.weather.surface-based-
→˓observations.SYNOP', wigos_station_identifier='0-454-2-AWSCHIDOOLE', name='air_
→˓temperature', limit=10000)

datestamp = [obs['properties']['resultTime'] for obs in obs['features']]
air_temperature = [obs['properties']['value'] for obs in obs['features']]

d = {
'Date/Time': datestamp,
'Air temperature (°C)': air_temperature

}

df = pd.DataFrame(data=d)

This OGC API Features endpoint has 4 datasets
Surface weather observations (passthrough)
Discovery metadata
Stations
Surface weather observations (hourly)

[3]: df.dtypes

[3]: Date/Time object
Air temperature (°C) float64
dtype: object

[4]: df.head(3)

[4]: Date/Time Air temperature (°C)
0 2022-01-12T13:55:00Z 24.85
1 2022-01-12T14:55:00Z 27.25
2 2022-01-12T15:55:00Z 26.65

[5]: print("Time extent\n")
print(f'Begin: {df["Date/Time"].min()}')
print(f'End: {df["Date/Time"].max()}')

print("Summary statistics:\n")
df[['Air temperature (°C)']].describe()

Time extent

Begin: 2022-01-12T13:55:00Z
(continues on next page)

13.2. API 59

wis2box, Release 0.5.1

(continued from previous page)

End: 2022-06-10T14:55:00Z
Summary statistics:

[5]: Air temperature (°C)
count 5106.000000
mean 23.541559
std 4.053172
min 13.550000
25% 20.950000
50% 23.350000
75% 26.350000
max 37.850000

[]:

13.2.3 R

R is a common programming language for data analysis and visualization. R provides easy access to various statiscal
analysis libraries. We are going to use the R libraries: sf to load features, dplyr for data manipulation, and

Install Requirements

[]: install.packages("sf")
install.packages("dplyr")

Import Requirements

[1]: library(sf)
library(dplyr)

oapi <- "http://oapi/oapi" # jupyter is run through docker
#oapi = http://localhost:8999/oapi # jupyter is run on host machine

Linking to GEOS 3.10.2, GDAL 3.4.1, PROJ 8.2.1; sf_use_s2() is TRUE

Attaching package: ‘dplyr’

The following objects are masked from ‘package:stats’:

filter, lag

The following objects are masked from ‘package:base’:

intersect, setdiff, setequal, union

60 Chapter 13. Data access

https://www.rstudio.com/
https://cran.r-project.org/web/packages/sf/vignettes/sf1.html
https://dplyr.tidyverse.org/

wis2box, Release 0.5.1

Stations

[2]: stations <- read_sf(paste0(oapi,"/collections/stations/items?f=json"))
print(stations)

Simple feature collection with 7 features and 5 fields
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 33.67305 ymin: -15.84052 xmax: 35.27428 ymax: -9.92951
z_range: zmin: 618 zmax: 1288
Geodetic CRS: WGS 84
A tibble: 7 × 6

wigos_station_identifier name url status id ␣
→˓geometry
<chr> <chr> <chr> <chr> <int> <POINT [°]>

1 0-454-2-AWSLOBI LOBI AWS http... opera... 65618 Z (34.07244 -14.39528 12...
2 0-454-2-AWSKAYEREKERA KAYEREKERA http... opera... 91840 Z (33.67305 -9.92951 848)
3 0-454-2-AWSMALOMO MALOMO http... opera... 91873 Z (33.83727 -13.14202 10...
4 0-454-2-AWSNKHOMA NKHOMA UNI... http... opera... 91875 Z (34.10468 -14.04422 12...
5 0-454-2-AWSTOLEZA TOLEZA http... opera... 91880 Z (34.955 -14.948 764)
6 0-454-2-AWSNAMITAMBO NAMITAMBO http... opera... 91885 Z (35.27428 -15.84052 80...
7 0-454-2-AWSBALAKA BALAKA http... opera... 91893 Z (34.96667 -14.98333 61...

Discovery Metadata

[3]: discovery_metadata <- read_sf(paste0(oapi,"/collections/discovery-metadata/items"))
print(discovery_metadata)

Simple feature collection with 1 feature and 13 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 32.68817 ymin: -16.8013 xmax: 35.7719 ymax: -9.230599
Geodetic CRS: WGS 84
A tibble: 1 × 14

identifier externalId title description themes providers language type extent
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>

1 data.core... "[{ \"sc... Surf... Surface we... "[{ ... "[{ \"n... en data... "
→˓{ \"...
... with 5 more variables: created <date>, rights <chr>,
X_metadata.anytext <chr>, id <chr>, geometry <POLYGON [°]>

Observations

[4]: malawi_obs <- read_sf(paste0(oapi,"/collections/mwi.mwi_met_centre.data.core.weather.
→˓surface-based-observations.SYNOP/items"))
print(malawi_obs)

Simple feature collection with 10 features and 7 fields
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 35.27 ymin: -15.84 xmax: 35.27 ymax: -15.84

(continues on next page)

13.2. API 61

wis2box, Release 0.5.1

(continued from previous page)

z_range: zmin: 806 zmax: 806
Geodetic CRS: WGS 84
A tibble: 10 × 8

identifier phenomenonTime resultTime wigos_station_i... metadata
<chr> <dttm> <dttm> <chr> <chr>

1 WIGOS_0-45... 2021-07-07 14:55:00 2022-02-21 14:15:14 0-454-2-AWSNAMI... "[{ \"...
2 WIGOS_0-45... 2021-07-07 15:55:00 2022-02-21 14:15:14 0-454-2-AWSNAMI... "[{ \"...
3 WIGOS_0-45... 2021-07-07 16:55:00 2022-02-21 14:15:14 0-454-2-AWSNAMI... "[{ \"...
4 WIGOS_0-45... 2021-07-07 17:55:00 2022-02-21 14:15:14 0-454-2-AWSNAMI... "[{ \"...
5 WIGOS_0-45... 2021-07-07 18:55:00 2022-02-21 14:15:14 0-454-2-AWSNAMI... "[{ \"...
6 WIGOS_0-45... 2021-07-07 19:55:00 2022-02-21 14:15:15 0-454-2-AWSNAMI... "[{ \"...
7 WIGOS_0-45... 2021-07-07 20:55:00 2022-02-21 14:15:15 0-454-2-AWSNAMI... "[{ \"...
8 WIGOS_0-45... 2021-07-07 21:55:00 2022-02-21 14:15:15 0-454-2-AWSNAMI... "[{ \"...
9 WIGOS_0-45... 2021-07-07 22:55:00 2022-02-21 14:15:15 0-454-2-AWSNAMI... "[{ \"...
10 WIGOS_0-45... 2021-07-07 23:55:00 2022-02-21 14:15:15 0-454-2-AWSNAMI... "[{ \"...
... with 3 more variables: observations <chr>, id <chr>, geometry <POINT [°]>

[]:

13.2.4 Using QGIS

Overview

This section provides examples of interacting with wis2box API using QGIS.

QGIS is a free and open-source cross-platform desktop GIS application that supports viewing, editing, and analysis of
geospatial data. QGIS supports numerous format and encoding standards, which enables plug-and-play interoperability
with wis2box data and discovery metadata.

62 Chapter 13. Data access

https://qgis.org

wis2box, Release 0.5.1

Accessing the discovery catalogue

QGIS provides support for the OGC API - Records standard (discovery). To interact with the wis2box discovery
catalogue:

• from the QGIS menu, select Web -> MetaSearch -> MetaSearch

• click the “Services” tab

• click “New”

• enter a name for the discovery catalogue endpoint

• enter the URL to the discovery catalogue endpoint (i.e. http://localhost:8999/oapi/collections/
discovery-metadata)

• ensure “Catalogue Type” is set to “OGC API - Records”

• click “OK”

This adds the discovery catalogue to the MetaSearch catalogue registry. Click “Service Info” to display the properties
of the discovery catalogue service metadata.

To search the discovery catalogue, click the “Search” tab, which will provide the ability to search for metadata records
by bounding box and/or full text search. Click the “Search” button to search the discovery catalogue and visualize
search results. Clicking on metadata records in the search result table will show footprints on the map to help provide
the location of the search result. Double-clicking a search result will show the entire metadata record.

13.2. API 63

wis2box, Release 0.5.1

Note: For more information on working with catalogues, consult the official QGIS MetaSearch documentation.

Visualizing stations

QGIS provides support for the OGC API - Features standard (access). To interact with the wis2box API:

• from the QGIS menu, select Layer -> Add Layer -> Add WFS Layer. . .

• click “New”

• enter a name for the API endpoint

• enter the URL to the API endpoint (i.e. http://localhost:8999/oapi)

• under “WFS Options”, set “Version” to “OGC API - Features”

• click “OK”

• click “Connect”

64 Chapter 13. Data access

https://docs.qgis.org/latest/en/docs/user_manual/plugins/core_plugins/plugins_metasearch.html

wis2box, Release 0.5.1

A list of collections is displayed. Select the “Stations” collection and click “Add”. The Stations collection is now added
to the map. To further explore:

• click on the “Identify” (i) and click on a station to display station properties

• select Layer -> Open Attribute Table to open all stations in a tabular view

Note that the same QGIS workflow can be executed for any other collection listed from wis2box API.

13.2. API 65

wis2box, Release 0.5.1

Note: For more information on working with OGC API - Features, consult the official QGIS WFS documentation.

Summary

The above examples provide a number of ways to utilize the wis2box API from the QGIS desktop GIS application.

13.3 PubSub

13.3.1 Downloading data from WIS2 using pywis-pubsub

Overview

This section provides examples of using the pywis-pubsub tool to download data from WIS2 global services. WIS2
global services include a Global Broker that provides users the ability to subscribe to data (via topics) and download
to their local environment / workstation / decision support system from the WIS2 Global Cache.

The pywis-pubsub tool

This repository includes docker files to help you subscribe and download data from the WIS2 network, by using
pywis-pubsub inside the wis2box-subscribe-download container.

pywis-pubsub is a Python package that provides publish, subscription and download capability of data from WIS2
infrastructure services.

Before starting the wis2box-subscribe-download container, the default configuration (provided in docker/
wis2box-subscribe-download/local.yml) must be updated, by defining the URL of the MQTT broker as well as
the desired topics to subscribe to.

In addition, the storage path should be updated to specify where the downloaded should be saved to.

fully qualified URL of broker
broker: mqtts://username:password@host:port

whether to run checksum verification when downloading data (default true)
verify_data: true

whether to validate broker messages (default true)
validate_message: true

list of 1..n topics to subscribe to
topics:

- 'cache/a/wis2/topic1/#'
- 'cache/a/wis2/topic2/#'

storage: filesystem
storage:

type: fs
options:

path: /tmp/foo/bar

66 Chapter 13. Data access

https://docs.qgis.org/3.16/en/docs/user_manual/working_with_ogc/ogc_client_support.html#wfs-and-wfs-t-client
https://github.com/wmo-im/pywis-pubsub

wis2box, Release 0.5.1

To start a continuous subscribe-and-download process, run the wis2box-subscribe-download container as follows
(-d for detached mode, --build to ensure changes in local.yml are built into the container):

docker-compose -f docker/docker.subscribe-download.yml up -d --build

To stop the subscribe-and-download process, run the following command:

docker-compose -f docker/docker.subscribe-download.yml down

Running pywis-pubsub interactively

pywis-pubsub can also be run interactively from inside the wis2box main container as follows:

login to wis2box main container
python3 wis2box-ctl.py login

edit a local configuration by using docker/wis2box-subscribe-download/local.yml as a␣
→˓template
vi /data/wis2box/local.yml

connect, and simply display data notifications
pywis-pubsub subscribe --config local.yml

connect, and additionally download messages
pywis-pubsub subscribe --config local.yml --download

connect, and filter messages by bounding box geometry
pywis-pubsub subscribe --config local.yml --bbox=-142,42,-52,84

Summary

The above examples provide examples of using pywis-pubsub to subscribe and download data from WIS2 global ser-
vices.

13.3.2 Using Python and paho-mqtt

This example will use widely available and used python language and libraries to download some announcements, and
then retrieve the corresponding data, using only the paho-mqtt client library, in addition to Python standard libraries.

[1]: import json
import paho.mqtt.client as mqtt
import random
import urllib
import urllib.request

host='localhost'
user='wis2box'
password='wis2box'

r = random.Random()
(continues on next page)

13.3. PubSub 67

https://pypi.org/project/paho-mqtt

wis2box, Release 0.5.1

(continued from previous page)

clientId='MyQueueName'+ f"{r.randint(1,1000):04d}"
number of messages to subscribe to.
messageCount = 0
messageCountMaximum = 5

maximum size of data download to print.
sizeMaximumThreshold = 1023

The above imports the required modules. It is also assumed that localhost is set up and is publishing messages.
Message queueing protocols provide real-time notification about availability of products.

The standard Python package used to subscribe to messages is paho-mqtt (paho.mqtt.client). The package uses
callbacks.

Note that messageCount is used to limit the length of the demonstration (otherwise infinite, as it is a continuous flow).

Let’s investigate our callbacks.

[2]: def sub_connect(client, userdata, flags, rc, properties=None):
print("on connection to subscribe: ", mqtt.connack_string(rc))
for s in ["origin/#"]:

client.subscribe(s, qos=1)

The sub_connect callback needed is called when the connection is established, which required to subscribe to topics
we are interested in (topics are: origin/#, where / is a topic separator and # is a wildcard for any tree of topics.

The qos=1 refers to Quality of Service, where 1 establishes reception of messages at least once. qos=1 is recommended.

The next callback is called every time a message is received, and decodes and prints the message.

To keep the output short for the demonstration, we limit the subscriber to a few messages.

[3]: def sub_message(client, userdata, msg):
"""
print messages received. Exit on count received.
"""

global messageCount,messageCountMaximum

m = json.loads(msg.payload.decode('utf-8'))

print(f"message {messageCount} topic: {msg.topic} received: {m}")
print(f"message {messageCount} data: {getData(m)}")

messageCount += 1

if messageCount > messageCountMaximum:
client.disconnect()
client.loop_stop()

The message handler above calls the getData() (below). The messages themselves are usually announcements of data
availability, but when data is small, they can include the data itself (inline) in the content field. Usually the message
refers to the data using a link. Here is a routine to obtain the data given an announcement message:

[4]: def getData(m, sizeMaximum=1000):
"""

(continues on next page)

68 Chapter 13. Data access

wis2box, Release 0.5.1

(continued from previous page)

given a message, return the data it refers to
"""

if 'size' in m and m['size'] > sizeMaximum:
return f" data too large {m['size']} bytes"

elif 'content' in m:
if m['content']['encoding'] == 'base64':

return b64decode(m['content']['value'])
else:

return m['content']['value'].encode('utf-8')
else:

url = m['baseUrl'] + '/' + m['relPath']
with urllib.request.urlopen(url) as response:

return response.read()

The calling code then registers the callbacks, connects to the broker, and starts the event loop:

[]: client = mqtt.Client(client_id=clientId, protocol=mqtt.MQTTv5)
client.on_connect = sub_connect
client.on_message = sub_message
client.username_pw_set(user, password)
client.connect(host)

client.loop_forever()

on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.

(continues on next page)

13.3. PubSub 69

wis2box, Release 0.5.1

(continued from previous page)

on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.
on connection to subscribe: Connection Accepted.

[]:

13.4 Running the examples

To be able to run these examples, one needs to start up a Jupyter Notebook environment. Below is an example of
starting a Jupyter session:

git clone https://github.com/wmo-im/wis2box.git
cd docs/source/data-access
jupyter notebook --ip=0.0.0.0 --port=8888

When Jupyter starts up it may open a browser window for you. If not you would need to to point a browser at http:
//localhost:8888 to see the menu of notebooks available in this directory.

70 Chapter 13. Data access

http://localhost:8888
http://localhost:8888

wis2box, Release 0.5.1

13.5 Summary

The above examples provide a number of ways to utilize the wis2box suite of services.

13.5. Summary 71

wis2box, Release 0.5.1

72 Chapter 13. Data access

CHAPTER

FOURTEEN

EXTENDING WIS2BOX

At its core, wis2box is a plugin architecture orchestrating all the required components of a node in the WIS 2.0 net-
work. Driven by topic hierarchies, wis2box can be used to process and publish any type of geospatial data beyond the
requirements of the WIS 2.0 itself.

In this section we will to explore how wis2box can be extended. wis2box plugin development requires knowledge of
how to program in Python as well as Python’s packaging and module system.

14.1 Building your own data plugin

The heart of a wis2box data plugin is driven from the wis2box.data.base abstract base class (ABC) located in
wis2box/data/base.py. Any wis2box plugin needs to inherit from wis2box.data.base.BaseAbstractData. A
minimal example can be found below:

from datetime import datetime
from wis2box.data.base import BaseAbstractData

class MyCoolData(BaseAbstractData):
"""Observation data"""
def __init__(self, defs: dict) -> None:

super().__init__(defs)

def transform(self, input_data: Path) -> bool:
transform data
populate self.output_data with a dict as per:
self.output_data = {

'c123': {
'_meta': {

'identifier': 'c123',
'relative_filepath': '/path/to/item/',
'data_date': datetime_object

},
'bufr4': bytes(12356),
'geojson': geojson_string

}
}
return True

The key function that plugin needs to implement is the transform function. This function should return a True or
False of the result of the processing, as well as populate the output_data property.

73

wis2box, Release 0.5.1

The output_data property is a dict of keys/values. Each key should be the identifier of the item, with the following
values dict:

The _meta element can include the following:

• identifier: identifier for report (WIGOS_<WSI>_<ISO8601>)

• relative_filepath: path to data, required to publish data with BaseAbstractData.publish

• geometry: GeoJSON geometry object, required to send geometry with WIS2.0 notification

• md5: md5 checksum of encoded data

• wigos_station_identifier: WIGOS identifier

• data_date: (as Python datetime objects) based on the observed datetime

• originating_centre: Originating centre (see Common code table C11)

• data_category: Category of data, see BUFR Table A

• <format-extension>: 1..n properties for each format representation, with the key being the filename extension.
The value of this property can be a string or bytes, depending on whether the underlying data is ASCII or binary,
for example

14.2 Packaging

The next step is assembling your plugin using standard Python packaging. All plugin code and configuration files
should be made part of the package so that it can operate independently when running in wis2box. For distribution and
installation, you have the following options:

• publish to the Python Package Index (PyPI) and install in the wis2node container with pip3 install
wis2box-mypackage

• git clone or download your package, and install via python3 setup.py install

See the Python packaging tutorial or Cookiecutter PyPackage for guidance and templates/examples.

Note: It is recommended to name your wis2box packages with the convention wis2box-MYPLUGIN-NAME, as well as
adding the keywords/topics wis2box and plugin to help discovery on platforms such as GitHub.

14.3 Integration

Once your package is installed on the wis2box container, the data mappings need to be updated to connect your plugin
to a topic hierarchy. See Data mappings for more information.

An example plugin for proof of concept can be found in https://github.com/wmo-cop/wis2box-csv-observations

74 Chapter 14. Extending wis2box

https://docs.python.org/3/library/datetime.html
https://pypi.org
https://packaging.python.org/en/latest/tutorials/packaging-projects
https://github.com/audreyfeldroy/cookiecutter-pypackage
https://github.com/wmo-cop/wis2box-csv-observations

wis2box, Release 0.5.1

14.4 Example plugins

The following plugins provide useful examples of wis2box plugins implemented by downstream applications.

Plugin(s) Organiza-
tion/Project

Description

wis2box-csv-
observations

WMO plugin for CSV surface observation data

wis2box-pyopencdms-
plugin

OpenCDMS plugin for connecting the Open Climate Data Management System
to wis2box

14.4. Example plugins 75

https://github.com/wmo-cop/wis2box-csv-observations
https://github.com/wmo-cop/wis2box-csv-observations
https://github.com/opencdms/wis2box-pyopencdms-plugin
https://github.com/opencdms/wis2box-pyopencdms-plugin

wis2box, Release 0.5.1

76 Chapter 14. Extending wis2box

CHAPTER

FIFTEEN

DEVELOPMENT

wis2box is developed as a free and open source project on GitHub. The wis2box codebase can be found at https:
//github.com/wmo-im/wis2box.

15.1 Testing

wis2box continuous integration (CI) testing is managed by GitHub Actions. All commits and pull requests to wis2box
trigger continuous integration (CI) testing on GitHub Actions.

GitHub Actions invokes functional testing as well as integration testing to ensure regressions.

15.1.1 Unit testing

Unit tests are in tests/unit.

15.1.2 Integration testing

Integration tests are in tests/integration/integration.py.

15.1.3 Functional testing

Functional tests are defined as part of GitHub Actions in .github/workflows/tests-docker.yml.

15.2 Versioning

wis2box follows the Semantic Versioning Specification (SemVer).

77

https://github.com/wmo-im/wis2box
https://github.com/wmo-im/wis2box
https://github.com/wmo-im/wis2box/blob/main/.github/workflows/tests-docker.yml
https://semver.org

wis2box, Release 0.5.1

15.3 Code Conventions

Python code follows PEP8 coding conventions.

78 Chapter 15. Development

https://www.python.org/dev/peps/pep-0008

CHAPTER

SIXTEEN

CONTRIBUTING

wis2box is developed as a free and open source project on GitHub. Contributions to the project (documentation, bug
fixes, enhancements, tests, etc.) are welcome and encouraged. Please consult the wis2box Contribution guidelines for
more information.

79

https://github.com/wmo-im/wis2box/blob/main/CONTRIBUTING.md

wis2box, Release 0.5.1

80 Chapter 16. Contributing

CHAPTER

SEVENTEEN

SUPPORT

Please consult the wis2box Discussions for support with the project.

81

https://github.com/wmo-im/wis2box/discussions

wis2box, Release 0.5.1

82 Chapter 17. Support

CHAPTER

EIGHTEEN

LICENSE

18.1 Software

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(continues on next page)

83

wis2box, Release 0.5.1

(continued from previous page)

(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the

(continues on next page)

84 Chapter 18. License

wis2box, Release 0.5.1

(continued from previous page)

Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

(continues on next page)

18.1. Software 85

wis2box, Release 0.5.1

(continued from previous page)

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

(continues on next page)

86 Chapter 18. License

wis2box, Release 0.5.1

(continued from previous page)

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

18.2 Documentation

The documentation is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

18.2. Documentation 87

https://creativecommons.org/licenses/by/4.0

wis2box, Release 0.5.1

88 Chapter 18. License

CHAPTER

NINETEEN

INDICES AND TABLES

• genindex

• modindex

• search

89

	Overview
	Features

	WIS 2.0
	How wis2box works
	High level system context
	Docker Compose
	Container workflow
	Technology

	Installation
	Requirements and dependencies
	Installing wis2box
	ZIP archive
	GitHub

	Summary

	Quickstart
	Requirements and dependencies

	Configuration
	Environment variables
	WIS2BOX_HOST_DATADIR

	Sections
	Storage
	MinIO
	API
	Logging
	PubSub
	Web application
	Other

	Docker Compose
	Summary

	Administration
	Public environment variables
	Default service ports
	Public services
	Internal services
	Changing default ports

	MQTT Quality of Service (QoS)

	Running
	Design time
	Runtime
	Running topics
	Concepts
	Topic hierarchy
	Environment
	Data mappings
	Station metadata
	Summary

	Discovery metadata
	Summary

	Data ingest, processing and publishing
	Interactive ingest, processing and publishing
	Explicit topic hierarchy workflow
	Implicit topic hierarchy workflow

	Event driven ingest, processing and publishing
	Summary

	Data pipeline plugins
	Default pipeline plugins
	wis2box.data.csv2bufr.ObservationDataCSV2BUFR
	wis2box.data.bufr4.ObservationDataBUFR2GeoJSON
	wis2box.data.geojson.ObservationDataGeoJSON

	API publishing
	Station metadata API publishing
	Discovery metadata API publishing
	Dataset collection API publishing
	Summary

	Data retention
	Cleaning
	Archiving

	Too Long Didn’t Read
	Environment
	Data mappings
	Station metadata
	Discovery metadata
	Build wis2box
	Start wis2box
	Runtime configuration
	Data ingest
	Debugging
	wis2box-ui

	Storage
	Overview
	Uploading data to MinIO
	Using the boto3 Python Client
	Using the MinIO Python Client
	Using S3cmd
	Using the MinIO UI

	Monitoring
	Prometheus exporters for wis2box
	Loki logging
	Monitoring topics
	Grafana dashboards
	Exploring logs

	Services
	Discovery Catalogue
	Data API
	Management API

	SpatioTemporal Asset Catalog (STAC)
	Web Accessible Folder (WAF)
	Broker
	Adding services

	Authentication and Access control
	Adding Access Control
	Authenticating
	Removing Access Control
	Extending Access Control

	Data access
	Overview
	API
	Using Python, requests and Pandas
	Stations
	Discovery Metadata
	Observations
	Pandas

	Using Python and OWSLib
	R
	Stations
	Discovery Metadata
	Observations

	Using QGIS
	Overview
	Accessing the discovery catalogue
	Visualizing stations
	Summary

	PubSub
	Downloading data from WIS2 using pywis-pubsub
	Overview
	The pywis-pubsub tool
	Running pywis-pubsub interactively
	Summary

	Using Python and paho-mqtt

	Running the examples
	Summary

	Extending wis2box
	Building your own data plugin
	Packaging
	Integration
	Example plugins

	Development
	Testing
	Unit testing
	Integration testing
	Functional testing

	Versioning
	Code Conventions

	Contributing
	Support
	License
	Software
	Documentation

	Indices and tables

